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Abstract

In general, discrete-time controls have become more and more preferable in engineering because of their easy

implementation and simple computations. However, the available discretization approaches for the systems having time

delays increase the system dimensions and have a high computational cost. This paper presents an effective discretization

approach for the continuous-time systems with an input delay. The approach enables one to transform the input-delay

system into a delay-free system, but retain the system dimensions unchanged in the state transformation. To demonstrate

an application of the approach, this paper presents the design of an LQ regulator for continuous-time systems with an

input delay and gives a state observer with a Kalman filter for estimating the full-state vector from some measurements of

the system as well. The case studies in the paper well support the efficacy and efficiency of the proposed approach applied

to the vibration control of a three-story structure model with the actuator delay taken into account.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Digital controllers, widely used in control practice, have shown a great number of advantages, such as their
accuracy and universality, over analog controllers in control performance. One of the limits to the
performance and applications of digital controllers is the unavoidable time delays due to the computation of
control strategies and related digital filters [1,2]. Over the past few decades, the effect of time delays on system
dynamics has drawn considerable attention in various fields [3–5]. The time-delay systems are described by
delay differential equations, which have some unique features different from ordinary differential equations.
For example, no matter how short the time delays are, the time-delay systems have an infinite number of
characteristic roots. Such infiniteness usually makes the analysis and the synthesis of the time-delay systems
very difficult.

This paper focuses on the time delays existing in the system input. The presence of the input delays, if not
considered in a controller design, may lead to deterioration of the control performance or may even cause
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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instability of the system. This is because the control force may act at the exact moment when the controlled
system does not need it. The frequently used ways of dealing with the input-delay systems are to convert
them into delay-free ordinary systems by using state transformations. For example, Kwon and Pearson [6]
proposed a state transformation in a continuous-time framework, and obtained a stabilizing controller.
Their extensions to various systems, such as time-varying systems and uncertain systems, have been available
[7–9]. These controls overcome some problems of the conventional Smith predictor method [5], and can
stabilize the unstable systems. However, the integrations involved in the state transformations lead to
complicated computations, which are impractical for their implementation. Choi and Chung [10],
and Kim and his coworkers [11] obtained stabilizing controllers of another type. Their controllers,
the so-called memoryless controllers, are designed to guarantee the delay-independent stability of the closed-
loop systems, and just have the feedback of the current state only. Hence, the memoryless controllers
are very easy to implement. Nevertheless, the memoryless controllers may be unduly conservative and have
less control performance as compared with the controllers using the information of the time delays and
employing the feedback of the past control history as well as the current state [8]. Cai and Huang [12,13], and
Zhou et al. [14] proposed the approaches converting the input-delay problems into delay-free problems in
discrete-time frameworks, and designing the linear quadratic (LQ) regulator. Their discrete-time approaches
need only simple computations during the control processes, and may suppress the vibrations of the systems
well. However, the dimensions of a controlled system after their state transformations are much higher than
those of the original time-delay system, especially when the system involves multiple inputs or when the time
delay is long. Thus, it is highly preferable to find a more tractable control approach to the systems having
input delays.

The primary aim of this paper is to present an effective state transformation, based on Ref. [15], and its
application to the problem of a linear quadratic Gaussian (LQG) control for a continuous-time system of
multiple degrees of freedom with an input delay. The proposed approach does not increase the system
dimensions with the state transformation, and involves simple computations during the control process. The
rest of the paper is organized as follows. In Section 2, the state transformation is presented first. Then, the
design problems of an LQ regulator and a state observer for the system after the transformation are discussed
in Section 3. In Section 4, some case studies are given for the vibration control of a three-story structure with
the actuator delay considered to show the efficacy of the proposed approach. Finally, the concluding remarks
are made in Section 5.
2. State transformation for an input-delay system

The system of concern is a continuous-time system of multiple degrees of freedom with an input delay
described by

_xðtÞ ¼ AcxðtÞ þ Bcuðt� tÞ þ vcðtÞ, (1)

yðtÞ ¼ CxðtÞ þ wcðtÞ, (2)

where t40 is the time delay, and xðtÞ 2 R‘�1, uðtÞ 2 Rm�1, yðtÞ 2 Rn�1 are the state vector, the input vector
and the output vector, respectively. vcðtÞ and wcðtÞ are the stochastic processes having the mean values
of zero and the incremental covariances R1c dt and R2c dt, respectively. The system can be converted, as in
Appendix A, into the following discrete-time form with the sampling period D:

xðk þ 1Þ ¼ AdxðkÞ þ Bd1uðk � aþ 1Þ þ Bd2uðk � aÞ þ vdðkÞ, (3)

yðkÞ ¼ CxðkÞ þ wdðkÞ. (4)

In what follows, this discrete-time form of the input-delay system is converted into a delay-free system by
introducing a state transformation. The transformation is given in two subsections for 0otpD and Dot,
respectively.
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2.1. Case 1: 0otpD

When the time delay t is shorter than or equal to the sampling period D (i.e., a ¼ 1), the state vector at the
ðk þ aÞth sampling can be written as

xðk þ aÞ ¼ AdxðkÞ þ Bd2uðk � 1Þ þ Bd1uðkÞ þ vdðkÞ

¼ xðkÞ þ Bd1uðkÞ þ vdðkÞ, (5)

where the vector xðkÞ is defined as

xðkÞ � AdxðkÞ þ Bd2uðk � 1Þ. (6)

xðk þ 1Þ can be obtained as follows by substituting Eq. (3) into Eq. (6):

xðk þ 1Þ ¼ Adxðk þ 1Þ þ Bd2uðkÞ

¼ AdfAdxðkÞ þ Bd2uðk � 1Þg þ ðAdBd1 þ Bd2ÞuðkÞ þ AdvdðkÞ

¼ AdxðkÞ þ BduðkÞ þ Advd ðkÞ, (7)

where Bd is

Bd � AdBd1 þ Bd2. (8)

Eq. (7) is in the standard form of a linear system in control theory and does not have any time delay
apparently. In other words, a delay-free system in the state space can be obtained from input-delay system (1)
when 0otpD by introducing a new state vector.

2.2. Case 2: Dot

When the time delay t is longer than the sampling period D (i.e., aX2), Eq. (1) can be converted as follows
[15]. From Eq. (3), the state vector x at the ðk þ aÞth sampling can be obtained as

xðk þ aÞ ¼ Adxðk þ a� 1Þ þ Bd1uðkÞ þ Bd2uðk � 1Þ þ vdðk þ a� 1Þ

¼ AdfAdxðk þ a� 2Þ þ Bd1uðk � 1Þ þ Bd2uðk � 2Þ þ vdðk þ a� 2Þg

þ Bd1uðkÞ þ Bd2uðk � 1Þ þ vdðk þ a� 1Þ

¼ � � �

¼ Aa
dxðkÞ þ Ad ½I;Ad ; . . . ;A

a�2
d �

Bd1uðk � 1Þ

Bd1uðk � 2Þ

..

.

Bd1uðk � aþ 1Þ

2
6666664

3
7777775
þ Bd1uðkÞ

þ ½I;Ad ; . . . ;A
a�1
d �

Bd2uðk � 1Þ

Bd2uðk � 2Þ

..

.

Bd2uðk � aÞ

2
6666664

3
7777775
þ ½I;Ad ; . . . ;A

a�1
d �

vdðk þ a� 1Þ

vdðk þ a� 2Þ

..

.

vdðkÞ

2
6666664

3
7777775

¼ xðkÞ þ Bd1uðkÞ þ ½I;Ad ; . . . ;A
a�1
d �

vdðk þ a� 1Þ

vdðk þ a� 2Þ

..

.

vdðkÞ

2
6666664

3
7777775
, (9)
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where the vector xðkÞ is defined as

xðkÞ � Aa
dxðkÞ þ Ad ½I;Ad ; . . . ;A

a�2
d �

Bd1uðk � 1Þ

Bd1uðk � 2Þ

..

.

Bd1uðk � aþ 1Þ

2
666664

3
777775þ ½I;Ad ; . . . ;A

a�1
d �

Bd2uðk � 1Þ

Bd2uðk � 2Þ

..

.

Bd2uðk � aÞ

2
666664

3
777775. (10)

Substituting Eq. (3) into Eq. (10) yields

xðk þ 1Þ ¼ Aa
dfAdxðkÞ þ Bd1uðk � aþ 1Þ þ Bd2uðk � aÞ þ vdðkÞg

þ Ad ½I;Ad ; . . . ;A
a�2
d �

Bd1uðkÞ

Bd1uðk � 1Þ

..

.

Bd1uðk � aþ 2Þ

2
6666664

3
7777775
þ ½I;Ad ; . . . ;A

a�1
d �

Bd2uðkÞ

Bd2uðk � 1Þ

..

.

Bd2uðk � aþ 1Þ

2
6666664

3
7777775
. (11)

By recasting Eq. (11) in terms of uðkÞ, one obtains

xðk þ 1Þ ¼ Ad Aa
dxðkÞ þ Ad ½I;Ad ; . . . ;A

a�2
d �

Bd1uðk � 1Þ

Bd1uðk � 2Þ

..

.

Bd1uðk � aþ 1Þ

2
6666664

3
7777775

8>>>>>><
>>>>>>:

þ ½I;Ad ; . . . ;A
a�1
d �

Bd2uðk � 1Þ

Bd2uðk � 2Þ

..

.

Bd2uðk � aÞ

2
6666664

3
7777775

9>>>>>>=
>>>>>>;
þ AdBd1uðkÞ þ Bd2uðkÞ þ Aa

dvdðkÞ

¼ AdxðkÞ þ ðAdBd1 þ Bd2ÞuðkÞ þ Aa
dvdðkÞ. (12)

With the help of Bd � AdBd1 þ Bd2, one obtains

xðk þ 1Þ ¼ AdxðkÞ þ BduðkÞ þ Aa
dvdðkÞ. (13)

As can be seen from Eq. (13), input-delay system (3) can also be converted into a delay-free system when aX2,
by introducing the new state vector xðkÞ defined in Eq. (10).
2.3. Remarks

The new state vectors in Eqs. (6) and (10) have the dimensions of

dimfxðkÞg ¼ ‘ � 1. (14)

This implies that the dimensions of the delay-free system in the state transformation remain the same as those
of the original system. In contrast, the approaches in Refs. [12–14,16] have to increase the dimensions of the
delay-free system to ‘ þma because of their state transformations, and hence, give rise to very high
computational costs, especially when the original system involves multiple inputs or when the time delay is
relatively long.
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3. LQG controller for a system with an input delay

3.1. LQ regulator

This subsection focuses on the design of the LQ regulator for the input-delay system discussed in Section 2
since the LQ regulator, as a classical controller, represents a convenient approach to optimal and robust
control for engineering systems. The cost function for the LQ regulator reads

J ¼
Xþ1
k¼0

fxTðkÞQ1xðkÞ þ uTðkÞQ2uðkÞg ¼ J1 þ J2, (15)

where Q1 and Q2 are the weighting matrices which are symmetric and positive semidefinite, and J1 and J2 are
as follows:

J1 �
Xþ1
k¼0

xTðkÞQ1xðkÞ; J2 �
Xþ1
k¼0

uTðkÞQ2uðkÞ. (16)

If the target system does not have any time delay, the control input of the LQ regulator should be
uðkÞ ¼ �LðkÞxðkÞ. In this case, the substitution of the input vector into the cost function leads to a quadratic
form with respect to the state vector xðkÞ. For the present case, however, the LQ regulator is designed for
state-space models (7) and (13) in the new state vector xðkÞ. Thus, the control input of the LQ regulator
becomes uðkÞ ¼ �LðkÞxðkÞ. Hence, cost function (15) is not unified in the quadratic form of the original state
vector xðkÞ or the form of the new state vector xðkÞ. As a result, cost function (15) cannot be used directly for
the design of the LQ regulator for systems (7) and (13). In what follows, the cost function in a quadratic form
of xðkÞ is derived from cost function (15). For this purpose, J1 can be divided into the following two parts:

J1 ¼
Xþ1
k¼0

xTðkÞQ1xðkÞ

¼
Xa�1
k¼0

xTðkÞQ1xðkÞ þ
Xþ1
k¼a

xTðkÞQ1xðkÞ ¼ J11 þ J12, (17)

where

J11 �
Xa�1
k¼0

xTðkÞQ1xðkÞ; J12 �
Xþ1
k¼a

xTðkÞQ1xðkÞ. (18)

The study begins with J11. In the design of the LQ regulator, vdðkÞ in Eq. (3) can be neglected. Thus, one can
simply consider

xðk þ 1Þ ¼ AdxðkÞ þ Bd1uðk � aþ 1Þ þ Bd2uðk � aÞ. (19)

Provided uðkÞ ¼ 0 when ko0, Eq. (19) becomes

xðk þ 1Þ ¼ AdxðkÞ ¼ A2
dxðk � 1Þ ¼ � � � ¼ Akþ1

d xð0Þ (20)

in the summation range of J11 because the terms of uðk � aþ 1Þ and uðk � aÞ disappear. Substituting Eq. (20)
into J11 in Eq. (18) yields

J11 ¼
Xa�1
k¼0

xTðkÞQ1xðkÞ ¼
Xa�1
k¼0

xTð0ÞðAk
dÞ

TQ1A
k
dxð0Þ. (21)

Eq. (21) shows that J11 is a constant determined by the initial state xð0Þ, and independent of the input vector
uðkÞ. The summation in J12 starts from k ¼ a to þ1, and hence J12 can be written as

J12 ¼
Xþ1
k¼a

xTðkÞQ1xðkÞ ¼
Xþ1
i¼0

xTði þ aÞQ1xði þ aÞ. (22)
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If vdðkÞ is neglected, Eqs. (5) and (9) yield

xðk þ aÞ ¼ xðkÞ þ Bd1uðkÞ. (23)

Substituting Eq. (23) into Eq. (22) leads to

J12 ¼
Xþ1
i¼0

fxðiÞ þ Bd1uðiÞg
TQ1fxðiÞ þ Bd1uðiÞg

¼
Xþ1
i¼0

fxTðiÞQ1xðiÞ þ 2xTðiÞQ1Bd1uðiÞ þ uTðiÞBT
d1Q1Bd1uðiÞg. (24)

Now, cost function (15) can be recast as

J ¼ J11 þ J12 þ J2

¼ J11 þ
Xþ1
k¼0

fxTðkÞQ1xðkÞ þ 2xTðkÞQ1Bd1uðkÞ þ uTðkÞðBT
d1Q1Bd1 þQ2ÞuðkÞg

¼ J11 þ J, (25)

where

J �
Xþ1
k¼0

fxTðkÞQ1xðkÞ þ 2xTðkÞQ12uðkÞ þ uTðkÞQ2uðkÞg, (26)

Q12 � Q1Bd1; Q2 � BT
d1Q1Bd1 þQ2. (27)

Because Q1 and Q2 are the symmetric and positive semidefinite matrices, Q2 also becomes symmetric and
positive semidefinite. The optimization problem of minimizing the cost function J becomes the corresponding
problem of J since J11 is a constant. In other words, the control input minimizing J also minimizes the cost
function J. Moreover, the cost function J becomes a quadratic form of the state xðkÞ if the control input is
given by uðkÞ ¼ �LðkÞxðkÞ. Thus, the optimization problem of minimizing J can be dealt with as an LQ
regulator problem with respect to the state vector xðkÞ. The control input minimizing the cost function J is

uðkÞ ¼ � LðkÞxðkÞ

¼ � fBT
dSðk þ 1ÞBd þQ2g

�1fBT
dSðk þ 1ÞAd þQT

12gxðkÞ, (28)

where SðkÞ is the solution of the discrete-time Riccati equation

SðkÞ ¼ AT
dSðk þ 1ÞAd � fA

T
dSðk þ 1ÞBd þQ12g

� fBT
dSðk þ 1ÞBd þQ2g

�1fBT
dSðk þ 1ÞAd þQT

12g þQ1. (29)

This yields a time-varying controller. The stationary controller can be obtained as

uðkÞ ¼ �LxðkÞ ¼ �ðBT
dSBd þQ2Þ

�1
ðBT

dSAd þQT
12ÞxðkÞ, (30)

where S is determined by the following Riccati equation:

S ¼ AT
dSAd � ðA

T
dSBd þQ12ÞðB

T
dSBd þQ2Þ

�1
ðBT

dSAd þQT
12Þ þQ1. (31)

In order to design LQ regulator (30), Riccati equation (31) needs to be solved. In general, it is impossible to
solve the Riccati equation analytically. However, Matlab command (dare) can offer numerical results and
complete the design of the stationary controller (30).

3.2. State observer with a Kalman filter

The LQ regulator requires a measurable full-state vector [17], which may not be available in most practical
cases. This subsection discusses the observer with the Kalman filter for estimating the state vector xðkÞ from
the available measurements of the system described by Eqs. (1) and (2). All of the vectors and the coefficient
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matrices on the right-hand sides of Eqs. (6) and (10) defining the state vector xðkÞ can be obtained at the kth
sampling except for xðkÞ. Thus, if the unknown vector xðkÞ can be estimated, the state vector xðkÞ can be
obtained. Now one can postulate the observer as follows to estimate the state vector xðkÞ:

x̂ðk þ 1jkÞ ¼ Ad x̂ðkjk � 1Þ þ Bd1uðk � aþ 1Þ þ Bd2uðk � aÞ þ KðkÞfyðkÞ � Cx̂ðkjk � 1Þg, (32)

where x̂ðk þ 1jkÞ represents the prediction of xðk þ 1Þ estimated by using the kth measurement. If one defines
the estimation error as e � x� x̂, the estimation error at the ðk þ 1Þst sampling reads

eðk þ 1Þ ¼ xðk þ 1Þ � x̂ðk þ 1jkÞ

¼ AdfxðkÞ � x̂ðkjk � 1Þg þ vdðkÞ � KðkÞ½CfxðkÞ � x̂ðkjk � 1Þg � wd ðkÞ�

¼ ½I; �KðkÞ�
AdeðkÞ þ vd ðkÞ

CeðkÞ þ wdðkÞ

" #
. (33)

The observer can minimize the following variance of the estimation error:

PðkÞ � EfeðkÞeTðkÞg. (34)

From Eqs. (33) and (34), Pðk þ 1Þ becomes

Pðk þ 1Þ ¼ Efeðk þ 1ÞeTðk þ 1Þg

¼ E ½I; �KðkÞ�
AdeðkÞ þ vd ðkÞ

CeðkÞ þ wdðkÞ

" #
AdeðkÞ þ vdðkÞ

CeðkÞ þ wdðkÞ

" #T
I

�KTðkÞ

" #8<
:

9=
;. (35)

Because eðkÞ is independent of vd ðkÞ and wdðkÞ, Eq. (35) can be recast in the following form by using Eq. (34):

Pðk þ 1Þ ¼ ½I; �KðkÞ�
AdPðkÞA

T
d þ R1 AdPðkÞC

T
þ R12

CPðkÞAT
d þ RT

12 CPðkÞCT
þ R2

" #
I

�KTðkÞ

" #
. (36)

According to the idea of the completion of squares [17], Eq. (36) can be minimized if KðkÞ satisfies

KðkÞfCPðkÞCT
þ R2g ¼ AdPðkÞC

T
þ R12. (37)

If fCPðkÞCT
þ R2g is positive definite, one obtains the Kalman gain as follows:

KðkÞ ¼ fAdPðkÞC
T
þ R12gfCPðkÞC

T
þ R2g

�1. (38)

Substituting Eq. (38) into Eq. (36) results in the following discrete-time Riccati equation:

Pðk þ 1Þ ¼ AdPðkÞA
T
d þ R1 � fAdPðkÞC

T
þ R12gfCPðkÞC

T
þ R2g

�1fCPðkÞAT
d þ RT

12g. (39)

By solving Eq. (39), the Kalman gain in Eq. (38) can be determined. The corresponding steady-state solution
satisfies the following algebraic Riccati equation:

P ¼ AdPA
T
d þ R1 � ðAdPC

T
þ R12ÞðCPC

T
þ R2Þ

�1
ðCPAT

d þ RT
12Þ. (40)

The solution of Eq. (40) gives the steady-state Kalman gain as follows:

K ¼ ðAdPC
T
þ R12ÞðCPC

T
þ R2Þ

�1. (41)

3.3. Summary of controller design for an input-delay system

The LQG control for the systems having an input delay can be realized in the following way. The control
input is determined by LQ regulator (30), where the regulator gain can be obtained by solving Riccati equation
(31), and the new state vector xðkÞ is defined in Eqs. (6) and (10) for a ¼ 1 and aX2, respectively. Because such
an LQ regulator includes the linear summations only, the computation during the control process is very
simple. In addition, the vector xðkÞ in the state vector xðkÞ is estimated by Kalman filter (32) if the full-state
vector cannot be measured.
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The design parameters of the regulator are the weighting matrices Q1 and Q2 corresponding to the original
state vector xðkÞ and the input vector uðkÞ, respectively. Hence, one can choose them in a similar way to design
the regulator and need not consider the physical meanings of the new state vector xðkÞ.

4. Illustrative examples

To demonstrate the efficacy and efficiency of the proposed approach, this section presents some numerical
simulations on the vibration control of a three-story building [12] with a delayed actuator, as shown in Fig. 1.
In the numerical simulations, the vibration of the structure was suppressed by the proposed control approach.
The acceleration data of the El Centro earthquake (north-south component) scaled to the maximum
acceleration of 0:12gms�2 shown in Fig. 2 were used as the external excitation. The mass, stiffness and
damping coefficients of each story unit were taken as mi ¼ 1000 kg, ki ¼ 980 kNm�1 and ci ¼ 1:407 kNsm�1,
respectively ði ¼ 1; . . . ; 3Þ. An actuator was assumed to be installed on the first-story unit to apply the active
control force u. The control systems for suppressing the vibrations of huge structures usually use hydraulic
actuators because of their strong output. However, such type of actuators generally have remarkable time
delays between the output force and the input signal [2]. Thus, it was assumed that the actuator in the model
has a time delay t. A sensor was placed at the third-story unit to measure the inter-story drift x3. The drift x3 is
the only one measurable output of the system. The vectors xðtÞ, vcðtÞ, the matrices Ac, Bc and C in Eqs. (1)
and (2) read

xðtÞ ¼
XðtÞ

_XðtÞ

" #
; vcðtÞ ¼

0

m�1hp

" #
pðtÞ,

Ac ¼
0 I

�m�1k �m�1c

" #
; Bc ¼

0

m�1hu

" #
,

C ¼ ½0; 0; 1; 0; 0; 0�, (42)
Actuator

Sensor
m3

m2

m1

y=x3

u

Fig. 1. Three-story building model with a delayed actuator.

Fig. 2. El Centro earthquake acceleration for external excitation.
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where XðtÞ ¼ ½x1ðtÞ; x2ðtÞ; x3ðtÞ�
T, pðtÞ is the external excitation and m, k, c, hu and hp are:

m ¼ 103 �

1 0 0

1 1 0

1 1 1

2
664

3
775; k ¼ 9:8 � 105 �

1 �1 0

0 1 �1

0 0 1

2
664

3
775,

c ¼ 1407�

1 �1 0

0 1 �1

0 0 1

2
664

3
775; hu ¼

1

0

0

2
664
3
775; hp ¼ �10

3 �

1

1

1

2
664
3
775. (43)

The weighting matrices Q1 and Q2 for the design of the LQ regulator were chosen to be Q1 ¼

diagð½105; 105; 105; 1; 1; 1�Þ and Q2 ¼ 2� 10�10, respectively. The weighting matrices R1, R12 and R2 for the
observer design were fixed as R1 ¼ diagð½0; 0; 0; 2� 10�1; 0; 0�Þ, R12 ¼ 0 and R2 ¼ 10�6, respectively. The
sampling period was taken as D ¼ 0:002 s.

Fig. 3 gives the variations of the maximum inter-story drifts of each story unit and the control input with an
increase of the time delay t when the normal LQG control system was applied, in which the time delay was not
taken into account in the controller design. The dashed lines represent the case without control, and the solid
lines represent the case when the normal LQG controller was applied. As can be observed from Fig. 3, the
normal LQG controller makes the system unstable even if the time delay t is very short.

Fig. 4 shows the time histories of the inter-story drifts of each unit and the control input when the proposed
control strategy was applied to the case when the time delay t ¼ 0:1 s. The dashed lines denote the case
without control, and the solid lines for the case with the proposed control strategy. Fig. 4 shows that the
vibration of each story unit can be well suppressed even though the control system can sense only the drift of
the third story unit (Fig. 4c). This result indicates that the Kalman estimator works well for the control system
having a time delay, and the proposed control strategy is effective for such a system even if the full-state vector
is not measurable.

Fig. 5 gives the variations of the maximum inter-story drifts of the each story unit and the control input with
an increase of the time delay t when the proposed control strategy was applied. The control efficiency
Fig. 3. Variation of maximum inter-story drifts (a)–(c) and control force (d) with an increase of time delay. - - -: without control,

and —: under normal LQG without the delay taken into account.
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Fig. 4. Time histories of inter-story drifts (a)–(c) and control force (d). - - -: without control, and —: proposed control ðt ¼ 0:1 sÞ.

Fig. 5. Variation of maximum inter-story drifts (a)–(c) and control force (d) with an increase of time delay. - - -: without control,

and —: proposed control.
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decreases gradually with an increase of the time delay t, and the maximum drifts converge with those of the
open-loop response. The figure shows that the system does not cause instability over the whole time delay
range (0ptp6 s, that is, 0pap3000).
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In order to make comparisons, other simulations based on two existing methods were performed.
Firstly, the proposed control strategy was compared with the discrete-time control presented by Cai et al. [12]
under the same condition. Cai’s controller can be used only if the full-state vector is available since
it is an LQ regulator. In this comparison, hence, it was assumed that the full-state vector can be measured.
The simulation result shows that the proposed control strategy has the same control efficiency as Cai’s control
upon the assumption. However, Cai’s control has to increase the system dimensions through the state
transformation. For example, when t ¼ 0:1 s, Cai’s control and the other existing discrete-time controls in
[14,17] increase the system dimensions to ‘ þma ¼ 56. In contrast, the proposed approach retains
the same dimensions ‘ ¼ 6 of the delay-free system as the dimensions of the original system. That is, the
proposed approach can achieve the same control effect as Cai’s control, but does not increase the system
dimensions.

The second comparison focuses on Choi’s memoryless controller [10]. The memoryless controllers, designed
to satisfy the delay-dependent stability conditions, just need the feedback of the current state. Hence, they are
easier to be used for practical implementation than other controls including the proposed control strategy if
they are applicable to the system of concern. Choi’s control needs iterations for finding the positive-definite
solution of the Riccati-like equation. According to his algorithm, the iteration starts from determining
whether there exists a solution of the equation with one set of the weighting matrices Q1 and Q2 and the
parameter �40. If the solution cannot be found, the procedure is iterated with the new � replaced by �=2 until
the positive-definite solution is found or � is less than the prescribed lower limit. For this simulation, the
previously mentioned parameters were used, and another specific parameter g in this control was set to be
g ¼ 0:5. Although the iteration was done from � ¼ 1 to 10�20, the solution could not be found. Hence, the
controller could not be designed for this system. Choi pointed out in his paper that even though the algorithm
fails for one choice of the weighting matrices, it cannot be concluded that it fails for their other choices.
Nevertheless, the changes of the weighting matrices indicate the change of the prescribed specification of the
controller, which is inadequate for controller designs.

5. Conclusions

The paper presents an applicable approach to the design of an LQG controller for multi-degree-of-freedom
systems with a time delay in control input. The approach enables one to transform the input-delay system into
a delay-free system first and then complete the design of an LQG controller for the input-delay system as is
usually done for a delay-free system. The proposed approach features the state transform, which retains the
system dimensions unchanged, whereas the existing approaches have to increase the system dimensions,
especially when there are multiple inputs or when the input delay is long. The proposed approach is applicable
to systems with a long time delay because the controller is established without any approximations to the time
delay. As shown in the design of the LQ regulator and the state observer, the proposed approach is simple and
easy to implement. Furthermore, the numerical simulations indicate that the proposed approach can
effectively control the vibration of systems with a time delay even when the full-state vector of the system is
not measurable.
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Appendix A. Derivation of discrete-time form

In order to obtain the discrete-time form of Eqs. (1) and (2), one applies the zero-order holder with the
sampling period D [12,16,17]. The time delay t can be written with D as

t ¼ aD� b, (A.1)
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where a40 is an integer and b satisfies 0pboD. The analytical solution of Eq. (1) is

xðtÞ ¼ eAcðt�t0Þxðt0Þ þ

Z t

t0

eAcðt�xÞBcuðx� tÞdxþ
Z t

t0

eAcðt�xÞvcðxÞdx. (A.2)

Here, assuming t0 ¼ kD and t ¼ ðk þ 1ÞD, and substituting them into Eq. (A.2), one obtains

xfðk þ 1ÞDg ¼ eAcDxðkDÞ þ
Z ðkþ1ÞD

kD
eAcfðkþ1ÞD�xgBcuðx� tÞdxþ

Z ðkþ1ÞD
kD

eAcfðkþ1ÞD�xgvcðxÞdx. (A.3)

Replacing the integration variable x by Z ¼ ðk þ 1ÞD� x leads to

xfðk þ 1ÞDg ¼ eAcDxðkDÞ þ
Z D

0

eAcZBcuðkDþ D� t� ZÞdZþ
Z D

0

eAcZvcðkDþ D� ZÞdZ. (A.4)

Substituting Eq. (A.1) into Eq. (A.4) yields

xfðk þ 1ÞDg ¼ eAcDxðkDÞ þ
Z D

0

eAcZBcufðk � aÞDþ Dþ b� ZgdZþ
Z D

0

eAcZvcðkDþ D� ZÞdZ. (A.5)

Noticing that the vectors are discretized as xðtÞ ¼ xðkDÞ when kDptoðk þ 1ÞD by the zero-order holder, one
can know that the term of u in Eq. (A.5) can be divided into two cases

ufðk � aÞDþ Dþ b� Zg ¼
ufðk � aþ 1ÞDg if 0pZpb;

ufðk � aÞDg if boZpD:

(
(A.6)

According to Eq. (A.6), Eq. (A.5) can be written as

xfðk þ 1ÞDg ¼ eAcDxðkDÞ þ
Z b

0

eAcZ dZBcufðk � aþ 1ÞDg

þ

Z D

b
eAcZ dZBcufðk � aÞDg þ

Z D

0

eAcZvcðkDþ D� ZÞdZ. (A.7)

Denoting xðkDÞ by xðkÞ, the discrete-time forms can be obtained as Eqs. (3) and (4), where

Ad ¼ eAcD;

Bd1 ¼
R b
0 eAcZ dZBc;

Bd2 ¼
R D
b eAcZ dZBc;

vdðkÞ ¼
R D
0 eAcZvcðkDþ D� ZÞdZ;

8>>>>><
>>>>>:

(A.8)

whereas vd and wd are the Gaussian white noises with the zero-mean values and the covariances as

EfvdðkÞv
T
d ðkÞg ¼

R D
0 eAcZR1ce

AT
c Z dZ ¼ R1;

EfvdðkÞw
T
d ðkÞg ¼ R12;

Efwd ðkÞw
T
d ðkÞg ¼ R2:

8>><
>>: (A.9)
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